Improving the Space-Time Efficiency of Matrix Multiplication Algorithms

Yuan Tang

yuantang@fudan.edu.cn

School of Computer Science, Fudan University

Motivation

- Matrix Multiplication and fast algorithms (e.g. Strassen) is a fundamental computation and building block in algorithm design.
- Classic Processor-Aware (PA) approaches may not utilize all processor effectively unless the processor number matches well the structure of algorithm. E.g.
 - The Communication-Avoiding Parallel Strassen (CAPS) by Ballard et al. [5] requires p to be an exact power of 7. Lipshitz et al. [32] improved it to a multiple of 7 with no large prime factors, i.e. $p=m*7^x$, where 1<=m<7 and 1<=x are integers by a hybrid of Strassen and classic MM.
 - Communication—Avoiding parallel Recursive rectangular Matrix Multiplication (CARMA) by Demmel et al. [20] assumes p is an exact power of 2, or any of p's prime factor can be bounded by a small constant.
- Classic Processor-Oblivious (PO) and Cache-Oblivious MM algorithms achieve optimality either in time or space, but not both. E.g.
 - CO2: O(n) depth, O($n^3/(B\sqrt{M}) + p n M/B$) w.h.p.
 - CO3: O($\log n$) depth, O($n^3/B + p \log n M/B$) w.h.p.


```
CO3(C, A, B)
 1 /\!\!/ C \leftarrow A \times B
                                                                                         CO2(C, A, B)
    if (sizeof(C) \leq BASE\_SIZE)
         BASE-KERNEL(C, A, B)
                                                                                          1 /\!\!/ C \leftarrow A \times B
 3
                                                                                          2 if (sizeof(C) \leq base_size)
          return
     D \leftarrow \operatorname{alloc}(\operatorname{sizeof}(C))
                                                                                                   BASE-KERNEL(C, A, B)
                                                                                          3
     // Run all 8 sub-MMs concurrently
                                                                                                  return
     CO3(C_{00}, A_{00}, B_{00}) \parallel CO3(C_{01}, A_{00}, B_{01})
                                                                                             # Run the first 4 sub-MMs concurrently
    \| CO3(C_{10}, A_{10}, B_{00}) \| CO3(C_{11}, A_{10}, B_{01}) \|
                                                                                          6 CO2(C_{00}, A_{00}, B_{00}) \parallel CO2(C_{01}, A_{00}, B_{01})
    \| CO3(D_{00}, A_{01}, B_{10}) \| CO3(D_{01}, A_{01}, B_{11})
                                                                                          7 \| CO2(C_{10}, A_{10}, B_{00}) \| CO2(C_{11}, A_{10}, B_{01})
     \| CO3(D_{10}, A_{11}, B_{10}) \| CO3(D_{11}, A_{11}, B_{11}) \|
                                                                                          8 ; // sync
                                                                                             # Run the next 4 sub-MMs concurrently
     ; // sync
     // Merge matrix D into C by addition
                                                                                         10 CO2(C_{00}, A_{01}, B_{10}) \parallel CO2(C_{01}, A_{01}, B_{11})
     madd(C, D)
                                                                                         11 \| CO2(C_{10}, A_{11}, B_{10}) \| CO2(C_{11}, A_{11}, B_{11})
     free (D)
                                                                                             ; // sync
     return
                                                                                              return
          (a) Recursive MM algorithm with O(n^3) space
                                                                                                   (b) Recursive MM algorithm with O(n^2) space
```

Figure 2: Recursive MM algorithms. "||" and ";" are linguistic constructs of the Nested Parallel model (Sect. 2).

Our Contributions

Algo.	Work (T_1)	Time (T_{∞})	Space (S_p)	Sequential Cache (Q_1)
CO2 [19] CO3 [19]	$O(n^3)$ $O(n^3)$	$O(n)$ $O(\log n)$	$O(n^2)$ $O(n^3)$	$O(n^3/(B\sqrt{M}) + n^2/B)$ $O(n^3/B)$
TAR-MM	$O(n^3)$	O(n)	$O(n^2 + pb^2)$	$O(n^3/(B\sqrt{M}) + n^2/B)$
SAR-MM STAR-MM	$O(n^3)$ $O(n^3)$	$O(\log n)$ $O(\sqrt{p}\log n)$	$O(p^{1/3}n^2)$ $O(n^2)$	$O(n^3/(B\sqrt{M}) + n^2/B)$ $O(n^3/(B\sqrt{M}) + n^2/B)$
Straightforward Strassen	$O(n^{\omega_0})$	$O(\log n)$	$O(n^{\omega_0})$	$O(n^{\omega_0}/B)$
SAR-Strassen STAR-MM-Strassen STAR-Strassen	$O(n^{\omega_0})$ $O(p^{0.09}n^{\omega_0})$ $O(n^{\omega_0})$	$O(\log n)$ $O(p^{1/2}\log n)$ $O(\log n)$	$O(pn^2)$ $O(n^2)$ $O(p^{(1/2)\omega_0}n^2)$	$O(n^{\omega_0}/(BM^{(1/2)\omega_0-1}) + n^2/B)$ $O(p^{0.09}n^{\omega_0}/(BM^{(1/2)\omega_0-1}) + p^{1/2}n^2/B)$ $O(n^{\omega_0}/(BM^{(1/2)\omega_0-1}) + p^{(1/2)\omega_0-1}n^2/B)$

Figure 1: Main results of this paper, with comparisons to typical prior works. CO2 stands for the MM (Matrix Multiplication) algorithm with $O(n^2)$ space (Fig. 2b); CO3 stands for the MM algorithm with $O(n^3)$ space (Fig. 2a); p denotes processor count, p is the base-case dimension. $\omega_0 = \log_2 7$

Cost Models and Programming Model

- Parallel Performance Model:
 - Work-span model, aka work-time model
 - Views a parallel computation as a DAG. Each vertex stands for a computation and each edge some control or data dependency. Each arithmetic op is counted uniformly as an $\mathrm{O}(1)$ op.
 - Only calculates total work (T_1) and critical-path length (T_\infty)
 - Parallel running time : T_p = O(T_1 / p + T_\infty) w.h.p. [3]
- Memory Model
 - Sequential cache complexity (Q_1) in the ideal cache model [22]
 - Parallel cache complexity: Q_p = Q_1 + O(p T_\infty M / B) w.h.p. under RWS scheduler [1, 37]
- Programming Model:
 - Nested Parallel Model, aka Fork-Join Model
 - Parallel: a || b
 - Serial: a; b

Time Adaptive and Reductive (TAR) Algorithm

- Problems of CO2:
 - It imposes more control dependency than necessary data dependency to keep the algorithm correct. E.g. all-to-all sync between the 2 parallel steps (8 sub-MMs) of CO2.
 - The all-to-all sync separating the 2 parallel steps actually serializes all n muls targeting the same cell. However, muls by itself are independent of each other and should be parallelized, serialization only makes sense for the later adds.
- Our improvements:
 - TAR to remove unnecessary control dependency from a critical path, parallelizes all muls and serializes only adds.

```
TAR-MM(C, A, B)
     /\!\!/ C \leftarrow A \times B
     if (sizeof(C) \leq base\_size)
         # Request space from the program-managed memory pool
         D \leftarrow \text{GET-STORAGE}(\text{sizeof}(C))
         BASE-KERNEL(D, A, B)
         // Write the intermediate results in D to C atomically
         ATOMIC-MADD(C, D)
         # Return storage to the memory pool
         free(D)
         return
     # Run all 8 sub-MMs concurrently
     TAR-MM(C_{00}, A_{00}, B_{00}) \parallel TAR-MM(C_{01}, A_{00}, B_{01})
     \| \text{TAR-MM}(C_{10}, A_{10}, B_{00}) \| \text{TAR-MM}(C_{11}, A_{10}, B_{01}) \|
     || TAR-MM(C_{00}, A_{01}, B_{10}) || TAR-MM(C_{01}, A_{01}, B_{11})
     \| \text{TAR-MM}(C_{10}, A_{11}, B_{10}) \| \text{TAR-MM}(C_{11}, A_{11}, B_{11}) \|
    return
```


Time Adaptive and Reductive (TAR) Algorithm

Memory Allocator:

- Space for base-case computation gets reused on each processor
- A task on base-case computation cannot block or be preempted.

• Theorem 1:

• The TAR-MM algorithm computes classic square MM of dimension n on a semiring in O(n)time, with O(n^2+p b^2) space, and optimal O(n^3/(B √ M) + n^2/B) cache misses, where b denotes the dimension of base case. If assuming b is some small constant, the space bound reduces to O(n^2+p).

```
TAR-MM(C, A, B)
     /\!\!/ C \leftarrow A \times B
     if (sizeof(C) \leq base\_size)
         # Request space from the program-managed memory pool
         D \leftarrow \text{GET-STORAGE}(\text{sizeof}(C))
         BASE-KERNEL(D, A, B)
         // Write the intermediate results in D to C atomically
         ATOMIC-MADD(C, D)
         # Return storage to the memory pool
         free(D)
         return
     # Run all 8 sub-MMs concurrently
     TAR-MM(C_{00}, A_{00}, B_{00}) \parallel TAR-MM(C_{01}, A_{00}, B_{01})
     \| \text{TAR-MM}(C_{10}, A_{10}, B_{00}) \| \text{TAR-MM}(C_{11}, A_{10}, B_{01}) \|
     || TAR-MM(C_{00}, A_{01}, B_{10}) || TAR-MM(C_{01}, A_{01}, B_{11})
     \| \text{TAR-MM}(C_{10}, A_{11}, B_{10}) \| \text{TAR-MM}(C_{11}, A_{11}, B_{11}) \|
    return
```

Figure 3: TAR-MM algorithm

Space Adaptive and Reductive (SAR) Algorithm

- Problems of CO3:
 - It allocates space irrespective of the availability of processors, i.e. it is designed for an infinite number of processors, or proportional to T_1 / T_\infty.
- Our improvements:
 - Generalization of `busy-leaves' property: each depth of each processor can have only one copy of memory and will be reused across function calls.
 - Lazy Allocation: allocate space iff it runs simultaneously on a different processor from the sub-MM updating the same output region.

```
SAR-MM(C, A, B, d)
```

```
1  // Computes SAR-MM at recursion level d

2  // Run all 8 sub-MMs concurrently

3  HLP(C_{00}, A_{00}, B_{00}, d+1) || HLP(C_{01}, A_{00}, B_{01}, d+1)

4  || HLP(C_{10}, A_{10}, B_{00}, d+1) || HLP(C_{11}, A_{10}, B_{01}, d+1)

5  || HLP(C_{00}, A_{01}, B_{10}, d+1) || HLP(C_{01}, A_{01}, B_{11}, d+1)

6  || HLP(C_{10}, A_{11}, B_{10}, d+1) || HLP(C_{11}, A_{11}, B_{11}, d+1)

7  return
```

Figure 5: SAR-MM algorithm

```
HLP(Parent, A, B, d)
 1 if (parent.trylock())
         // work right on parent's storage
         D \leftarrow parent
 4 else
         // request space for depth d
         D \leftarrow \text{GET-STORAGE}(\text{sizeof}(n/2^d))
    if (\operatorname{sizeof}(n/2^d) \leq \operatorname{BASE} \operatorname{SIZE})
         BASE-KERNEL(D, A, B)
 9 else
         SAR-MM(D, A, B, d)
11 if (D \neq parent)
         # Update D to parent atomically
         ATOMIC-MADD(parent, D)
13
         # Return storage to the memory pool
         free(D)
15
    else
16
         parent.unlock()
     return
```

Figure 4: The helper function request temporary storage from the program-managed memory pool iff parent's storage is occupied. If computation is on a local temporary storage, the helper function will write back results to parent by atomic addition.

Space Adaptive and Reductive (SAR) Algorithm

Theorem 3. The SAR-MM algorithm computes general MM of dimension n on a semi-ring in optimal O(logn) time,
 O(p^{1/3}n^2) space, and optimal O(n^3/B √ M + n^2/B) cache complexities, assuming p=o(n).

Figure 5: SAR-MM algorithm

```
HLP(Parent, A, B, d)
 1 if (parent.trylock())
         // work right on parent's storage
         D \leftarrow parent
 4 else
         // request space for depth d
         D \leftarrow \text{GET-STORAGE}(\text{sizeof}(n/2^d))
     if (\operatorname{sizeof}(n/2^d) \leq \operatorname{BASE} \operatorname{SIZE})
         BASE-KERNEL(D, A, B)
 9 else
         SAR-MM(D, A, B, d)
11 if (D \neq parent)
         # Update D to parent atomically
12
         ATOMIC-MADD(parent, D)
13
         # Return storage to the memory pool
14
         free(D)
15
16 else
         parent.unlock()
     return
```

Figure 4: The helper function request temporary storage from the program-managed memory pool iff parent's storage is occupied. If computation is on a local temporary storage, the helper function will write back results to parent by atomic addition.

Space-Time Adaptive and Reductive (STAR) Algorithm

- The TAR algorithm remove muls from a critical path without using much more space, while the SAR algorithm reduces the space complexity without increasing the time complexity
- STAR = TAR + SAR
- Theorem 4. The STAR-MM algorithm computes the general MM of dimension n on a semi-ring in O(√ plogn) time, optimal O(n^2) space, and optimal O(n^3/(B √ M)+n^2/B) cache bounds, assuming p=o(n^2/log^2 n)
- Theorem 7.The STAR-MM-Strassen algorithm has an O(p^{1/2} logn) time, O(p^{0.09} n^ ω 0)work, optimal O(n^2) space, and O(p^{0.09}·n^ ω 0/(BM^{(1/2)} ω 0-1}) + p^{1/2}·n^2/B) sequential cache complexities, where ω 0=log_2 7
 - Theorem 8. The STAR-Strassen algorithm has an optimal $O(n^{\omega})$ work, optimal $O(\log n)$ time, nearoptimal $O(n^{\omega})(BM^{(1/2)\omega}-1)$ + $p^{(1/2)\omega}-1$ n^2 / B) cache and an $O(p^{(1/2)\omega})$ n^2 space complexities, where $\omega 0 = \log_2 2$ 7.

Experiments

Table 1: Experiemental Machine

Name	24-core machine		
CPU type	Intel Xeon E5-2670 v3		
Clock Freq	2.30 GHz		
# sockets	2		
# cores / socket	12		
Dual Precision FLOPs / cycle	16		
Hyper-Threading	disabled		
os	CentOS 7 x86_64		
Compiler	ICC 19.0.3		
L1 dcache / core	32 KB		
L2 cache / core	256 KB		
L3 cache (shared)	30 MB		
memory	132 GB		

Speedup of TAR MM Algorithm w. MKL (N cores = 24)

Figure 6: TAR-MM's speedup over CO2 and CO3 with MKL kernel

with MKL kernel						
Mean/Median Spdp (%)	TAR	SAR	STAR			
CO2	-0.7/0.5	-2.0/-1.0	-2.6/-1.8			
CO3	38.4/38.1	36.6/36.5	35.8/34.0			
with	manual ke	rnel				
Mean/Median Spdp (%)	TAR	SAR	STAR			
CO2	11.8/9.2	9.3/6.8	10.5/8.0			
CO3	1.6/1.5	-0.6/-0.5	0.5/0.5			

